The Video Store Revisited Yet Again :
Adventures in GUI Acceptance Testing

Johan Andersson and Geoff Bache

Carmen Systems AB, Odinsgatan 9, SE-41103 Gé&teborg, Sweden
geoff.bache@carmensystems.com

Abstract. Acceptance testing for graphical user interfaces has long
been recognised as a hard problem. At the same time, a full suite of
acceptance tests written by the Onsite Customer has been a key princi-
ple of XP since it began [1]. It seems, however, that practice has lagged
behind theory, with many practitioners still reporting weak or no accep-
tance testing. At XP2003, we presented our successes with text-based
acceptance testing of a batch program[2]. In the past year we have ex-
tended this approach to apply to a user interface. We have developed an
approach based on simulation of user actions via a record/replay layer
between the application and the GUI library, generating a high-level
script that functions as a use-case scenario, and using our text-based ap-
proach for verification of correctness. We believe this is an approach to
GUI acceptance testing which is both customer- and developer-friendly.

1 XP acceptance testing

We should be clear what we regard as the primary aims of acceptance tests.
These are the standards by which we judge acceptance tests and approaches to
acceptance testing:

— The tests should model the actions of a user as closely as possible.

— Writing the tests should be quick, painless and require as few programming
skills as possible,

— Running the tests should be as smoothe as possible - press a button and
watch them go green/red.

— Maintaining the tests should not be too laborious.

— Tests should be as stable under changes as possible. In particular they should
be independent of things like font, user interface layout and internal design.

— Tests should document the features of the system in as readable a way as
possible.

Let’s also be clear at what we are not aiming for. While the following are worthy
aims, they are mainly the responsibility of other practices, for example Unit
Testing or the various replacements for it that we described in last year’s paper
[2].
— The tests should not aim to improve or document the design.
— The tests should concentrate on indicating the presence of errors, not pri-
marily help in fixing them.



2 Introduction

Our open source acceptance testing tool, TextTest [3], has traditionally been
a console application that we have used to test UNIX batch tools. Recently,
however, we wrote a GUI for it, and wanted to be able to test this GUI using
a variation of the same approach. We have come up with an approach to do
this that we found to be highly effective. For the sake of this paper, however,
we thought that we would use what we have learned to revisit the classic Video
Store problem, as this is likely to be more familiar to readers and avoids the
meta-situation of programs testing themselves! The Video Store has been used
to illustrate a few aspects of XP already, from refactoring to unit testing.[4]

TextTest is written in Python, and its GUI uses the PyGTK library[5]. The
examples are therefore taken from this environment.

3 The Theory: Principles of our Approach

3.1 Separating Simulation from Verification

Acceptance testing of GUIs has traditionally been regarded as one activity. Per-
haps due to our background with applications that do not have an interactive
aspect, we have come to regard it as two, largely independent activities: simu-
lating the interactive actions of a user in some persistent way (e.g. a test script)
and verifying that the behaviour is correct when performing these actions. For
future reference we refer to these as simulation and verification.

This simplifies matters somewhat because it removes the need for a tool that
does both, decoupling the activities. Each tool can then concentrate on being
good at one thing only. Armed with a pre-existing verification tool, TextTest[3],
(discussed later) which has proved successful in the world of batch applications,
the main challenge of testing a GUI is to find an effective approach to simulation.

3.2 An Agile Record/Replay approach

Record/Replay approaches have a strong theoretical appeal to us. To be able to
create tests as a user simply by clicking around the application under test seems
to be the easiest imaginable interface. Many tests can be created quickly, it is
totally clear to the person creating them what they represent, no (potentially
error-prone) code needs to be written per test and the only qualification for
writing them is understanding the system under test, which is needed anyway.

Record/Replay tools are nothing new. A wide range of them exist, of which
QCReplay|[6] is the one we have most experience of. In recent years, a bewilder-
ing array of open source varieties for Java have appeared as well[7]. They are
generally based on intercepting mouse clicks and keyboard input, recording them
in a script, and asserting behaviour by taking screen dumps (“photographing”
the screen)

They are not renowned for their popularity in the Agile community, however.
They tend to produce long, low-level scripts which are extremely tied to the
environment at the time when they were recorded.[8] For example:



1. Taking screen dumps is fragile under changes of font settings or window
manager.

2. Moving the mouse across a GUI generates lots of focus-in events, focus-out
events, mouse-over events etc. The application is only connected to (‘listening
for’) a fraction of these, so they fill up the script with junk.

3. Even relevant events are recorded in very low level terms, with commands
like click (124, 21). Change the GUI layout and all bets are off: everything
must be re-recorded.

In short, they do not embrace change. They are fun for a while but usually
a maintenance headache in the long run.

For this reason, they have been abandoned by many in favour of data-driven
approaches, that sacrifice some of the advantages listed initially for the ulti-
mately greater gain of maintainibility in a changing world. We, however, have
tried to rehabilitate record/replay in a more agile and maintainable form. In our
view this requires a radical change to the way it works.

3.3 Test Scripts as Use-Case Scenarios

We believe that the fundamental difference between acceptance tests and unit
tests is that acceptance tests have a customer focus and unit tests have a devel-
oper focus. A GUI acceptance test therefore has a lot in common with a Use-Case
scenario. It should be a description of an interaction sequence between the user
(actor) and the system under test from the point of view of the user. It should
not describe what happens internally in the system, instead, as a Use-Case sce-
nario, it should aim to give a user-readable statement of what happens during
the actor/system interaction in the high-level language of the domain.

Such a test has two major advantages over the kind of test generated by
traditional record/replay approaches. It is easy to read and functions well as
documentation of system behaviour. More importantly, it is much more inde-
pendent of the mechanism by which the use-case has been implemented.

We therefore want the test script that we will record and replay to be a high-
level natural language file describing what the user does in the terminology of
the domain. This fits well with the chosen verification approach, of comparing
high-level natural language files produced by the system.

How can this be done? It is clear that it is not possible to write such a
record/replay tool that sits on top of the application, starting, stopping it and
recording its events at the system level. We need a layer between the application
and the GUI library which can be told something about the terminology of the
domain and the intent of the application rather than its mechanics.

4 Applying the theory: Simulation with PyUseCase

We have developed an open source record/replay layer for PyGTK, “PyUse-
Case”[9], extending it as we have needed to, in the process of testing TextTest



in the past year. While this scripting engine will only be useful to other PyGTK
developers, the approach is possible with any GUI library.

To summarise, it differs from other record/replay tools in the following re-
spects:

1. It does not generate scripts in any particular "language’. What comes out is
a high-level use-case description in the terminology of the domain.

2. The relationship between it and the application is reversed. Instead of sitting
on top of the application and starting and stopping it, it sits between the
application and the GUI library.

3. Itis assertion-free, i.e. it is a pure simulation tool. Another tool (e.g. TextTest)
is needed for verification.

4.1 Creating a domain-language script

(Note that PyGTK’s terminology of ’connecting to signals’ may be understood
better as ’listening for events’ for readers used to other GUI libraries)

Our ideal is to be as close as possible to the terms in the user’s domain, and
not use the terms of the GUI layout or the mechanics of how it is used. For
example, when the user of VideoStore clicks the ’add movie’ button, we want
the script to simply say

add movie

rather than

click(’add movie’) or

click(124, 21)

This has obvious advantages. It’s about as stable under changes as is possible
: it survives as long as the user can in some way add a pre-selected movie at that
point. It is not dependent on the user interface layout, the choice of widgets for
the purpose of adding movies or the internal system design. It also leaves the
reader in little doubt as to what happens at this point.

How does it work? We need our developers to connect the GUI widget signals
to script commands at the same time they connect them to the methods that
will be called when the user performs some action. This tells the script engine
how to record the emission of that signal into a use-case description, and how
to convert it back again.

For example, PyGTK programmers might implement the ’add movie’ button
like this:

button.connect(’clicked’, addMovie)

where addMovie is the method that actually performs the change, and button
is the widget. To use PyUseCase, they would instead write

scriptEngine.connect(‘add movie’, button, ‘clicked’, addMovie)

Instead of connecting the addMovie method directly to the signal emitted
when the button is clicked, they connect it indirectly via the script engine, giving
the user action a name at the same time. This is not much of an extra burden
for the programmers. They just need to give names to everything the user can
do via the GUI by adding extra arguments to their ’connect’ statements.



This is basically the only API to PyUseCase. The syntax varies a bit for
different widgets, and for more complex widgets like list views you need to tell
it how to parse the arguments for selecting rows, etc. You also need your appli-
cation to know about record and replay mode, so it can forward these things to
PyUseCase.

Note that we only tell the script engine about signals we are connected to
anyway. This means that any signals we aren’t connected to won’t be recorded
by the script, whatever the user does with his mouse.

5 Verification with TextTest

TextTest and its usage were discussed in some detail in last year’s paper[2]. The
basic idea is the same, though it has gained many more features and users since
then, including a GUL

Essentially, the developers ensure that the system writes a plain-text ’be-
haviour file’ describing what it is doing. This file will contain all information
considered useful to the customer: internal state, parsing and response to user
actions, text that has appeared on the screen. Verification is achieved by the cus-
tomer saving this file (and any other text-convertible generated files considered
relevant) at the point he is happy both with what he is able to do with the sys-
tem and how the system responds to his actions. Note that this is not a ’system
diagnostic’ file and should be free of statements that only have meaning to devel-
opers. Developer-statements should be written to a different file, which can also
be generated and saved, but whose contents will not be viewed by the customer.
By convention the ’behaviour file’ is simply written to standard output.

A test-run then consists of replaying what the customer did and checking the
system’s text output for any differences from when the customer approved it.
Differences will show up as test failure, though they may be saved and turned into
the new correct behaviour if the customer approves the change. In conjunction
with a simulation tool, this can be used on a GUI just as easily as on a batch
application.

This has several advantages over requiring the customer to select assertions
to make per test. In essence, many more verifications can be made, at a level of
detail largely determined by the developers, who have a better overview of this.
The customer has one less thing to worry about, and cannot “forget” to make
some vital assertion. He can concentrate on using the system in an appropriate
way and looking out for correct responses from it.

The tests consist only of automatically generated plain text. This removes
the need to write any code per test. Your tests then depend on your program’s
behaviour file, but not on its internal design. This means refactoring will not
disturb the acceptance tests, and you will not end up needing to maintain a lot
of test code once you have a lot of tests. Bugs in your test code will not be hiding
bugs in your real code.

Also, a customer without development skills can interact with the behaviour
file, even if he isn’t writing it. It is written in natural language and describes



in words what is happening. He can spot if the important number he saw on
the screen didn’t appear in the behaviour file, for example. If the verification
is implemented as a load of Java test code, he can only hope it does what he
intended when writing the test.

6 Customer-developer interaction

We have developed a test-first approach to using these tools. This requires close
interaction between the customer and the implementing developers. The process
looks something like this. (See the appendix for examples of it in action!)

1. The customer does the simulation to record the test. He does as much as he
is able of what he wants to be able to do, generating a use-case script and a
behaviour file that records system responses.

2. The customer can force-fail the test by editing the use-case script (giving the
system some ’command’ it does not yet understand). This tells the developers
to add some user capability.

3. The customer can also force-fail the test by editing the behaviour file, if the
system responded incorrectly or incompletely. This tells the developers to
change the behaviour.

4. The developers take this test and implement the functionality, taking care
to make the system output descriptions of important new system actions to
the behaviour file.

5. The customer repeats the simulation with the new improved system (if
needed). When he is happy, the new test is added to the suite of accep-
tance tests.

In this way development can be considered to be ’driven’ by acceptance tests,
in that tests describing work to be done are provided by the customer before
that work is begun by developers. However, we have found this process most
practical for small incremental user stories, which are hopefully the daily stuff of
XP projects. Where the user wants completely new screens or totally different
behaviour, it’s more practical to describe this in words to developers and only
try to create acceptance tests when some attempt has been made to provide the
functionality. This is also likely to be the case in the very early stages of a project
when there is not so much around to write tests on yet. It is still possible to use
the approach for larger steps: but it requires a bit more of the test writer and is
more prone to tests needing to be re-written when the functionality is present.

With this process in place, we have also experienced less of a need for unit
tests. See our XP2003 paper|[2] for details.

7 Other benefits of the record/replay layer

The fact that our record/replay tool sits between the application and the GUI
library means it is a part of the application, rather than an optional extra for
the testers. This opens up some interesting possibilities for using it for other
things than directly recording and replaying tests.



7.1 Refactoring the tests

Everything possible has been done to keep the scripts short, high-level, and
change-resilient, staving off the evil day when they get too hard to manage
easily by pure record/replay. But applications get big and complex, and maybe
that day will come anyway. As we don’t have a language with syntax, we cannot
take the approach of refactoring out common code by hand. We need some other
way of updating a large number of tests when their use-case scripts prove to be
insufficiently resilient.

Fortunately, we have the possibility to run in record and replay mode simul-
taneously. This enables us to automatically update a great deal of tests very
quickly by telling the script engine to keep the old names for ’replay’ only, while
introducing the new ones for 'record’. This will work well where use-case actions
disappear or change description. It works less well when new use-case actions
need to be introduced to a lot of pre-existing tests, or when one conceptual
‘use-case action’ starts to require several clicks. This requires another approach,
which we have called “GUI Shortcuts”.

7.2 GUI Shortcuts: Towards a Dynamic User Interface

The record/replay layer is available at any time to any user of the system. This
raises the possibility that individual users can personally tweak the user interface
and eliminate repetitive actions by making use of the record/replay capabilities.

Most people have at one time or another ended up using a GUI in a repetitive
way. They generally do not need all of its capabilities, and may have to make
5 or so clicks just to reach the screen they usually work with. Or for example,
who hasn’t at some time or other been frustrated by constant pop-up dialogues
that demand “Are you sure you want to do this?” or something similar. This
can be minimised by good user interface design, but fundamentally applications
have to be configurable for their power users, and this can make them unwieldy
for their novice users.

The user can simply record a “shortcut” for his repetitive actions. He goes
into record mode at the appropriate point, records his usual five clicks (or OKs
all his annoying pop-ups), and then gives the script he has recorded a name. A
new button appears at the bottom of his screen, which he can click whenever he
wishes to repeat what he did. This will save him time and repetitive work.

In the case of maintaining scripts when a user action starts to require more
than one click, you can rely on the fact that shortcut names are recorded in
scripts if they are available. Therefore, you would record a shortcut for the
single click in the old system, run in record and replay mode simultaneously
as described previously to insert the shortcut into all tests, and then simply
re-record the shortcut (by hand) in the new system.

8 Conclusion

We feel that true Acceptance testing of GUIs can best be achieved by trying to
make record/replay approaches more ’agile’. This in turn is best achieved by an



approach that separates simulating user actions from verifying system behaviour
and uses co-operating, but separate tools for these things.

Simulation of user actions will be most change-resilient if it records use-case
descriptions that are independent of the mechanics of the GUI, and this can
only really be achieved by a record/replay layer between the application and
GUI library, rather than one that sits on top of the application. PyUseCase is
such a tool that works for PyGTK applications.

Verifying system behaviour is best done by a tool that compares automati-
cally generated plain text. Organised plain text is easy to update and maintain
and is independent of the system’s internal design. TextTest is such a tool that
will work for a program written in any language.

9 Appendix: Examples from the VideoStore

9.1 Step by step: fixing a bug in VideoStore

Let’s suppose that the system allows the user to add two movies with the same
name. This isn’t good, so we as customer want to create a test for it. Here’s
what we would do.

1. Open TextTest’s test creation functionality for the VideoStore application.

2. Enter 'DuplicateMovieBug’ as test name, describe problem in description
field. Create test.

3. Press 'Record Use-Case’ button. TextTest will then start VideoStore in
record mode, which forwards this mode to PyUseCase. We use the GUI
to enter a movie 'Star Wars’, add it twice, and then quit.

4. The test now contains a use-case script generated by PyUseCase. It looks
like this:
set new movie name to Star Wars
add movie
add movie
quit

5. We now have the chance to edit this script, but it describes what we did and
reproduced the bug, so we don’t need to.

6. Press 'Run Test’ button. TextTest now starts VideoStore in replay mode
(using our generated script), and collects VideoStore’s behaviour file. It looks
like this:

’set new movie name to’ event created with arguments ’Star Wars’
’add movie’ event created

Adding new movie ’Star Wars’. There are now 1 movies.

’add movie’ event created

Adding new movie ’Star Wars’. There are now 2 movies.

’quit’ event created

The ’event created’ lines are created by PyUseCase when it successfully re-
plays a script event. The ’Adding new movie’ lines are simple output state-
ments from VideoStore describing what it is doing.



7.

8.

We can now edit this as well. System behaviour was wrong, so we do so,
replacing the second ’Adding new movie’ line with a suitable error message.
Now we’re done. The test is handed over to the developers, who can run it
and will be given failure on the line we edited. They can then fix the problem,
and get VideoStore to send the error message to both the behaviour file and
the screen.

9.2 Step by Step : Adding new functionality to VideoStore

Let’s suppose that we want to be able to sort the list of movies alphabetically.
This functionality doesn’t yet exist.

O

10.

Open TextTest’s test creation functionality for the VideoStore application.
Enter ’SortMovies’ as test name, describe functionality in description field.
Press 'Record Use-Case’ button as before. TextTest will then start Video-
Store in record mode. We enter two movies 'Star Wars’ and "Die Hard’.
These are in the wrong order, so we want to sort them. But we can’t do that
yet. We quit.

TextTest then shows us the script it has generated. It looks like this:

set new movie name to Star Wars

add movie

set new movie name to Die Hard

add movie

quit

We now have the chance to edit this script. We wanted to do something we
couldn’t, so we add a line sort movies before the quit command.

Press 'Run Test’. TextTest now starts VideoStore in replay mode, using our
script and collects the behaviour file. It looks like this:

’enter new movie name’ event created with arguments ’Star Wars’
’add movie’ event created

Adding new movie ’Star Wars’. There are now 1 movies.

’add movie’ event created

Adding new movie ’Die Hard’. There are now 2 movies.

ERROR - ’sort movies’ event not understood.

’quit’ event created

We can now edit this as well. System behaviour was wrong, so we edit the
file, replacing the 'ERROR’ line with 'T’d like to press a sort button here.
It should sort the movie list into alphabetical order’ (or whatever, just to
make a difference appear on this line when the test is run)

Now we’re done. The test is handed over to the developers, who can run it
once again and will be given failure on the line we edited. They can then add
the sort button, and probably a little print-out to the behaviour file saying
what order our beloved movies are in. When they swap order suitably, the
developers return the test to the customer.

The customer can now review what happens. If he is happy that the sys-
tem behaves correctly, and that both user and system actions are correctly
recorded in their respective files, he saves the new behaviour and checks it
in to the acceptance test suite. If not, the process iterates.



References

(=2}

Beck, K.: Extreme Programming Explained. Addison-Wesley, 1999.

Andersson, J., Bache, G. and Sutton, P.: " XP with Acceptance-Test Driven Devel-
opment: A Rewrite Project for a Resource Optimization System” in Proceedings
of the 4th International Conference on Extreme Programming and Agile Processes
in Software Engineering (XP2003). Italy, 2003.

TextTest is open source and can be downloaded from
http://sourceforge.net/projects/texttest

An entire chapter on writing a Video Store GUI with unit tests is present in Astels,
D.: ?Test-Driven Development: A Practical Guide” Prentice Hall, 2003 A discus-
sion of refactoring with the same problem can be found in van Deursen, A. and
Moonen, L.: "The Video Store Revisited - Thoughts on Refactoring and Testing”
in Proceedings of the 3rd International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2002). Italy, 2002.

PyGTK is available from http://www.daa.com.au/ james/pygtk/. It comes as stan-
dard with Red Hat Linux versions 8.0 and onwards.
http://www.centerline.com/productline/qcreplay /qcreplay.html

At least 6 record/replay tools for Java can be found at
http://www.junit.org/news/extension/gui/index.htm

The tool ’Android’ gives a beautiful example of the kind of low-level
script you get from recording a test that does 1 + 2 = 3 in xcalc.
http://www.wildopensource.com/larry-projects/articlel.html

PyUseCase isn’t formally released at time of writing, though it hopefully will be
by the time of XP2004. It is in any case bundled with TextTest as TextTest itself
uses it for its own testing.



