An Introduction to
text-based test automation
and the TextTest tool

NJEPRPESEN
Making Every Mizssion Possible




Contentions

1. That there are circumstances where xUnit-style
testing isn’t the best choice.

2. That the text-based approach is an obvious
alternative candidate in many of these cases.

3. That there are advantages to operating
Acceptance testing in this way even in general.

4. That text-based test-driven development is
possible and even desirable.

5. That TextTest is the best free tool out there that
tests this way.

JEF'F'I:SI:N

Making Every Miss




Agile test automation ==
The APIl-assertion paradigm?

public void test Add() {
Nunber x = new Nunber (1);
Nunber y = new Nunber (1);
Nunber result = new Nunber (2);
Assert. assert Equal s(x.add(y), result);

}

o Classic, near universal xUnit
. We assume an API to the Number object
« We assert that it returns certain hardcoded values

JI:F'F'I:SI:N

Making Every Miss




Acceptance test tools
have the same approach

Fi xtures. Addi ti on

X y add()
1 1
1 2

« Fit table. Because customers don't write code.
« S0 we write them a “fixture”, give them a table aedthem fill in the numbers
. Under the covers it's more or less xUnit with valeaBlata and a nice interface.

JEPPI:SI:N

Making Every Miss




X X

Example applications where
this paradigm Is less than ideal

Anything in a non-mainstream language

UNIX-style command-line scripts Wide language variety (cshunit
anyone?). Command line/textual output key parts. D&gn often

haphazard.

Legacy systemsOften legacy language. Design optional.
Retrofitting APIs possible but hazardous. Correct lehaviour

maybe unknown.

Jeppesen’s airline crew schedule plannelCorrect behaviour
subjective and volatile. Large amounts of data fomteresting tests

JEPPI:SI:N

Making Every Miss




(Re-)Introducing
The text-based paradigm

opti ons. expr:

confi g. expr:
execut abl e: / usr/ bi n/ expr

1 +1

out put . expr:

2

« Run the system under test from the command line

. Define tests in terms of different command lines

. Compare produced text files to equivalent filesrfnorevious runs.
(and save them when appropriate)

.JEH’F’EESI:“J

Making Every Miss




Behaviour Change Management by
Comparing Plain Text

il

output.demo vs. output.demo - TkDiff 4.0
Eil= Edit “iew Mark Merge Help

[T :&ca || g ﬁ | [Merge:] % o —] g | [Ditf: gé: % @ % % [Mark:] ?
CATERTTESTATESTS \demohaddDuphoutput derms SUME ~1ALLTIP1ALOCALS ~1 4T emphdernotrmp03kd a1 459545 A ddD uphoutp
1 1
2 ‘zet hew movie name o' event created with argurents 'Star W ars! 2 ‘zet new movie name to' event created with argumnents 'Star Wiars'
3 3
4 ‘add movie' event created with arqurnents 4 ‘add movie' event created with argurents "
5 Adding movie "'Star Wars'. There are now 1 movies. 5 Adding movie "Star wWars' There are how 1 mowies.
E I
7 ‘add movie' event created with arguments " |.'-" ‘add rnowvie' event created with argurnents "
g | BRI | 'S tarars hnmh il =gl = | Bdding mowie 'StarWarsl Thigre siciiiow 2imovies:
3 3
10 ‘cloze! event created with arguments 10 'cloze’ event created with arguments
11 Exiting the video storel 11 E ziting the video store!

. Use produced “result files” and internal logs as a measure of system behaviour.
. Invest in them so they are easy to read and have the right level of detalil.
. Testing becomes a matter of Behaviour Change Management.

RJEPPESEN.

Making Every Mission Possible




Seeing testing as
Behaviour Change Management — not
Correctness Assertion

Release 1
Release 2

T=3 months
T=6 months
Business conditions change Release n
Your system behaviour will change
Your tests must also change T=3 years?
The tests help you manage change T>107

What could be more Agile? PN IEPPESEN.

Making Every Mission Possible




YV V V VYV V

NN X X

Assumptions of the text-based
paradigm

Can have one tool for all languages past, presenna future
Do not compel tests to bypass any parts of the sgst
Can handle any amount of data
Independent of the system design and APIs
Does not require any hand-coded assertions
But we still have (different) assumptions...
That system logging will not be a performance burde
That the system produces suitable files, or can aBsbe made to.

JI:F'F'I:SI:N@

Making Every Miss




What I1s TextTest?

A tool for automated text-based testing

Free, open source and written in Python (GUI written with PyGTK).
Works on UNIX systems and Windows XP/Vista

System under test is driven via the command line.

. Compares text files produced by the system under test against those
produced by previous runs

« Continually developed and improved by Jeppesen.

. Short demo follows...

RJEPPESEN.

Making Every Mission Possible




e

Text-based Acceptance Testing
and the GUI

'Search for Flights

Origin: AMNY | Destination: [ANY Search

Flight number| Origin airport| Destination airport | Carrier | Price | Day| Time | Duration | Available seats

SA001 SFO DEM Speadydir 400 |[Sun |13:40 |20m a0

San0z SFO LHF Speadydir 2000 [Mon [11:20 [11hE58m (22

SALD3 SFO LA Speadyhir 100 |[Tue [10:580 |22m a7

SAa004 LA SFO Speadydir 100 [Tue 1475 |34m ]

PADOT DAL FRA Fromptair (800 [Wed|15:25 |Bh3am |14

PAOOZ FRA DAL Fromptair 800 [Thu |5:25 |8haam |4

PADDZ FRA BOM Fromptair 700 [Thu |30 |Bh30m |97

PAO04 B FRA Fromptair 700 [Fri [19:45 [Bh10m {74

q] i [ ¥
Proceedio hook seats >

Status:

wait for flight

sel ect flight SA004

proceed to book seats
accept error

qui t

message

i nformation to | oad

Use, or write, a
record/replay library thg

xUseCase)

Testers record sensible
use-cases and critique
system behaviour.

Developers make sure
system logs everything
that can be observed
externally.
RJEPPESEN.

Making Every Mission Possible

A
can map GUI controls to
a domain language (e.g.




Text-based testing for the whole
team

System| ¢ Mr Team Leader - tear down this
/tests walll

 The tests only run at the syste\tn
level, but we can log at any level

* Developers also create logs of
QA lower level detail behaviour

 These are normally disabled but
can be easily enabled for

How automated tests are often organised. debugg i ng

e Gradually build a knowledge
base, unlike using debuggers

JEF'F'I:SI:N

Making Every Miss




Test-Driven Development

Wnte a test N

Write some
code

« We want to provide rapid feedback to the devela@pe&very build

. These tests are usually unit tests, but what if theren't?
. Wouldn't it be nice to use our acceptance testhigrole?

JEPF'I:SI:N

Making Every Miss




Text-based test-driven developmeint
(really behaviour-driven development)

Vital to take macro-level effects and the businass

perspective into effect when testing

Greatly enhance our feedback if we see them
every build instead of every iteration/release

Enhance communication between developers and

domain experts

Everything is text files, so easy to write test

sketches or suggest test changes by just editing

them by hand

But some things will be rather different...

JI:F'F'I:SI:N

Making Every Miss




“But system tests will be way too
slow to run at every build”

Maintaining mock test environments or
iInterdependent tests consumes human resources.

Running tests in parallel consumes hardware
resources. And hardware is cheap.

Grid Engines are widely available, easy to use,
and often free. TextTest integrates with SGE |and
LSF.

Running more tests faster becomes simply a
matter of buying more hardware.

WJEPPESEN

®
Making Every Mission Possible




“But | want to use my tests to drive

my design!”

Customer-perspective tests are unlikely t
help drive design or prevent overdesign

0

Much overdesign can be limited by “Usage-

driven design”

Before writing a class or method, write th
code that make use of it (calls it).

Ultimately, good design is mostly driven by

thinking hard and refactoring well.

WJEPPESEN

®
Making Every Mission Possible

<




“But | want to verify unit behaviour
before trying to run the system!”

When the intended behaviour of a method,
class or subsystem is clear it can be useful
to test it on its own.

We can reach for the interactive interpreter
or the “main method” for this purpose.

Aim is to drive development, not to bake
microdesign decisions into the test suite.

So we only make permanent the test that
makes sense in a wider and longer-term
perspective.

nwJEPPESEN

®
Making Every Mission Possible




“What ever happened to test-first?”

« Unit-tests are predictive in that they assert
up-front exactly what is expected.

* For larger-scale or requirements-focussed
tests this is often not possible.

o Specify thetest interaction first, but be
prepared to frequently adjust ttest
behaviour as the problem is fleshed out.

* Testing then becomes less about correctness
assertion and more abdwghaviour change
management.

JI:F'F'I:SI:N

Making Every Miss




“What about the ‘Expert Reads
Output’ antipattern?”

"You need a person to read the output. But
people are lazy and after a while will miss
things. Then your tests are proving the
wrong thing!”

Configure TextTest to find error messages
automatically.

Don't read the logs, observe the system!
TextTest will group similar changes.

Behaviour Change Management : changes
are more important than contents.

JEF'F'I:SI:N

Making Every Miss




Text-based ATDD : the process

Write tesﬂ ferte som@ , Logging N f Log some
interaction I8 code ) adequate? [information
Y
N Test
[ Release!] behaviour
1 expected?
N
SYS%\ ( save logs
@ Y behaviour 0

W if needed} JIEkF'EF'I%SI:N




Conclusions mgﬂj}‘

» Acceptance tests in the development cycle provide
feedback on both macro effects and business perspective

 There are obstacles but all can be overcome:
— slowness best conquered by parallelism
— design can still be driven, top-down

— need to relax the test-first concept and introduce that of
Behaviour Change Management

e Text-based testing is a much-underrated technique which
works well in this role

* Tool support available in the form of TextTest.

JEF'F'I:SI:N

Making Every Miss




TextTest Features texttest

Filters output to avoid false failure

Manages test data and isolation from global effects
Automatic organisation of test failures

“Nightjob website” to get a view of test progress over time
Performance testing

« Integrates with Sun Grid Engine for parallel testing (and LSF)
« Various “data mining” tools for automatic log interpretation

« Interception techniques to automatically “mock out” third-party
components (command line and network traffic).

. Integrates with xUseCase tools for GUI testing

“JEFFES§w®

Making Every Mission Possible




The coding exercise

]
ﬂ%’j}

 We are now going to try to use the techniques outlined
here to solve a toy coding problem in Python.

* We will not use unit testing as well. This is primarily to
keep things simple.

* We will proceed from simple behaviour and manage the
changes until it does what we want. We won’t expend
(much) effort predicting behaviour in advance.

« We will try to design top-down, but will use the python
Interpreter for bottom-up exploration when appropriate.
* You, the audience, should interrupt if:
— We take larger steps than you're comfortable with
— We over-design the code, or don’t drive design from actual usage
— We don't test it adequately
JI:F'F'I:SI:N

Making Every Miss




