
An Introduction to 
text-based test automation 

and the TextTest tool



Contentions

1. That there are circumstances where xUnit-style 
testing isn’t the best choice.

2. That the text-based approach is an obvious 
alternative candidate in many of these cases.

3. That there are advantages to operating 
Acceptance testing in this way even in general.

4. That text-based test-driven development is 
possible and even desirable.

5. That TextTest is the best free tool out there that 
tests this way.



Agile test automation ==
The API-assertion paradigm?

● Classic, near universal xUnit

● We assume an API to the Number object

● We assert that it returns certain hardcoded values

public void testAdd() {
Number x = new Number(1);
Number y = new Number(1);
Number result = new Number(2);
Assert.assertEquals(x.add(y), result);

}



Acceptance test tools 
have the same approach

● Fit table. Because customers don’t write code.

● So we write them a “fixture”, give them a table and let them fill in the numbers.

● Under the covers it’s more or less xUnit with variable data and a nice interface.

211

321

add()yx

Fixtures.Addition



Example applications where
this paradigm is less than ideal

� Anything in a non-mainstream language. 

� UNIX-style command-line scripts. Wide language variety (cshunit
anyone?). Command line/textual output key parts. Design often 
haphazard.

� Legacy systems. Often legacy language. Design optional. 
Retrofitting APIs possible but hazardous. Correct behaviour 
maybe unknown. 

� Jeppesen’s airline crew schedule planner. Correct behaviour 
subjective and volatile. Large amounts of data for interesting tests. 



(Re-)Introducing
The text-based paradigm

● Run the system under test from the command line

● Define tests in terms of different command lines 

● Compare produced text files to equivalent files from previous runs.

(and save them when appropriate)

config.expr:
executable:/usr/bin/expr

options.expr:
1 + 1

output.expr:
2



Behaviour Change Management by 
Comparing Plain Text 

● Use produced “result files” and internal logs as a measure of system behaviour.

● Invest in them so they are easy to read and have the right level of detail.

● Testing becomes a matter of Behaviour Change Management.



Seeing testing as
Behaviour Change Management – not 
Correctness Assertion

Start
Release 1

Release 2

Release n

T=0
T=3 months

T=6 months

T=3 years?

T>10?

Business conditions change

Your system behaviour will change

Your tests must also change

The tests help you manage change

What could be more Agile?



Assumptions of the text-based 
paradigm

� Can have one tool for all languages past, present and future

� Do not compel tests to bypass any parts of the system

� Can handle any amount of data

� Independent of the system design and APIs 

� Does not require any hand-coded assertions

� That system logging will not be a performance burden

� That the system produces suitable files, or can easily be made to.

� That the developers know what to log and how to log it

� That the command line interface and logging are not too volatile

But we still have (different) assumptions... 



What is TextTest?

● A tool for automated text-based testing

● Free, open source and written in Python (GUI written with PyGTK).

● Works on UNIX systems and Windows XP/Vista

● System under test is driven via the command line.

● Compares text files produced by the system under test against those 
produced by previous runs

● Continually developed and improved by Jeppesen.

● Short demo follows…



Text-based Acceptance Testing 
and the GUI

wait for flight information to load
select flight SA004
proceed to book seats
accept error message
quit

• Use, or write, a 
record/replay library that 
can map GUI controls to 
a domain language (e.g. 
xUseCase)

• Testers record sensible 
use-cases and critique 
system behaviour.

• Developers make sure 
system logs everything 
that can be observed 
externally. 



Text-based testing for the whole 
team

• Mr Team Leader - tear down this 
wall!

• The tests only run at the system 
level, but we can log at any level.

• Developers also create logs of 
lower level detail behaviour

• These are normally disabled but 
can be easily enabled for 
debugging

• Gradually build a knowledge 
base, unlike using debuggers

QAQA

sdgsQA

PD

The 
Wall

System 
tests

Unit 
Tests

How automated tests are often organised.



Test-Driven Development

● We want to provide rapid feedback to the developer at every build

● These tests are usually unit tests, but what if they weren't? 

● Wouldn’t it be nice to use our acceptance tests in this role? 



Text-based test-driven development
(really behaviour-driven development)

• Vital to take macro-level effects and the business 
perspective into effect when testing

• Greatly enhance our feedback if we see them 
every build instead of every iteration/release

• Enhance communication between developers and 
domain experts

• Everything is text files, so easy to write test 
sketches or suggest test changes by just editing 
them by hand

• But some things will be rather different…



“But system tests will be way too 
slow to run at every build”

• Maintaining mock test environments or 
interdependent tests consumes human resources.

• Running tests in parallel consumes hardware 
resources. And hardware is cheap.

• Grid Engines are widely available, easy to use, 
and often free. TextTest integrates with SGE and 
LSF. 

• Running more tests faster becomes simply a 
matter of buying more hardware.



“But I want to use my tests to drive 
my design!”

• Customer-perspective tests are unlikely to 
help drive design or prevent overdesign

• Much overdesign can be limited by “Usage-
driven design”

• Before writing a class or method, write the 
code that make use of it (calls it). 

• Ultimately, good design is mostly driven by 
thinking hard and refactoring well.



“But I want to verify unit behaviour 
before trying to run the system!”

• When the intended behaviour of a method, 
class or subsystem is clear it can be useful 
to test it on its own.

• We can reach for the interactive interpreter 
or the “main method” for this purpose.

• Aim is to drive development, not to bake 
microdesign decisions into the test suite.

• So we only make permanent the test that 
makes sense in a wider and longer-term 
perspective.



“What ever happened to test-first?”
• Unit-tests are predictive in that they assert 

up-front exactly what is expected.

• For larger-scale or requirements-focussed 
tests this is often not possible.

• Specify the test interaction first, but be 
prepared to frequently adjust the test
behaviour as the problem is fleshed out.

• Testing then becomes less about correctness 
assertion and more about behaviour change 
management.



“What about the ‘Expert Reads 
Output’ antipattern?”

• ”You need a person to read the output. But 
people are lazy and after a while will miss 
things. Then your tests are proving the 
wrong thing!”

• Configure TextTest to find error messages 
automatically.

• Don't read the logs, observe the system!

• TextTest will group similar changes.

• Behaviour Change Management : changes 
are more important than contents.



Text-based ATDD : the process

Write test 
interaction

Write some 
code

Log some 
information

Save logs

if needed

Test
behaviour
expected?

System
behaviour 
usable?

Logging 
adequate?

Y

N

Y

Y

N

N
Release!



Conclusions

• Acceptance tests in the development cycle provide 
feedback on both macro effects and business perspective

• There are obstacles but all can be overcome:
– slowness best conquered by parallelism
– design can still be driven, top-down
– need to relax the test-first concept and introduce that of 

Behaviour Change Management
• Text-based testing is a much-underrated technique which 

works well in this role
• Tool support available in the form of TextTest.



TextTest Features

● Filters output to avoid false failure
● Manages test data and isolation from global effects
● Automatic organisation of test failures
● “Nightjob website” to get a view of test progress over time
● Performance testing
● Integrates with Sun Grid Engine for parallel testing (and LSF)
● Various “data mining” tools for automatic log interpretation
● Interception techniques to automatically “mock out” third-party 
components (command line and network traffic).
● Integrates with xUseCase tools for GUI testing



The coding exercise

• We are now going to try to use the techniques outlined 
here to solve a toy coding problem in Python. 

• We will not use unit testing as well. This is primarily to 
keep things simple.

• We will proceed from simple behaviour and manage the 
changes until it does what we want. We won’t expend 
(much) effort predicting behaviour in advance.

• We will try to design top-down, but will use the python 
interpreter for bottom-up exploration when appropriate. 

• You, the audience, should interrupt if:
– We take larger steps than you’re comfortable with
– We over-design the code, or don’t drive design from actual usage
– We don’t test it adequately


